CHEMISTRY 203

Semi-micro Qualitative Analysis of Ag⁺, Cu²⁺, Fe²⁺ and Al³⁺

Purpose:

- To *separate* and *identify* silver ion (Ag⁺), copper ion (Cu⁺⁺⁾, ferric ion (Fe³⁺) and aluminum ion (Al³⁺) when present in a mixture.
- To *identify* the ions present in an *unknown* mixture.

Qualitative Analysis

Qualitative analysis is concerned with the *separation* and *identification* of various constituents in the mixture. It is a method for the determination of the types of ions present in a solution.

- > Analysis is carried out *systematically.*
- Separation of ions into groups is made as selective as possible by adding a specific group reagent.
- Separation of cations at each step must be carried out as *completely* as possible.
- Separation is based on selective <u>precipitation</u>, <u>amphoterism</u>, or <u>complexation</u> methods.

Group Reagent is the reagent that, when added to a mixture of ions, precipitate one or more ions and leave the others in solution

 Separation based on Precipitation Consider an aqueous solution, which contains salts of all the following ions: Ag⁺, Hg₂²⁺, Pb²⁺, Hg²⁺, Cu²⁺, Fe³⁺, Al³⁺, Mg²⁺, Ca²⁺, K⁺, Na⁺, and NH₄⁺ The above cations can be separated into <i>five</i> groups 						
Group	Group reagent	Cations precipitated				
-						
I	HCl (Cl -)	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺				
II	H_2S in acid (S ²⁻)	Pb ^{2+*} , Hg ²⁺ , Cu ²⁺				
III	$NH_3 + NH_4Cl (OH^-)$	Al ³⁺ , Fe ³⁺				
IV	No common reagent	Ca ²⁺ , as CaCO ₃ , Mg ²⁺ as MgNH ₄ PO ₄				
V	No precipitating Reagent	Soluble ions Na ⁺ , K ⁺ , NH ₄ ⁺				

Group V the "*soluble*" ions Na⁺, K⁺, NH₄⁺ are determined by tests other than those involving precipitation.

*PbCl₂ is relatively soluble (K_{sp} = 2.4 x 10⁻⁴) and consequently not all Pb²⁺ is precipitated in Group I.

Note that the separation of ions depends on the concentration of the reactants. In order for precipitation to occur, the ion product must exceed K_{sp} .

Solubility Product: K_{sp} Consider a saturated solution of AgCl that is in contact with solid AgCl. The solubility equilibrium can be represented as AgCl (s) \Rightarrow Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = [Ag^+][Cl^-] = 1.6 \times 10^{-10}$ Solubility product of a compound is the product of the *molar* concentration of constituent ions each raised to the *power* of its stoichiometric coefficient in the equilibrium expression. PbCl₂ (s) \Rightarrow Pb²⁺ (aq) + 2 Cl⁻ (aq) $K_{sp} = [Pb^{2+}][Cl^-]^2 = 2.4 \times 10^{-4}$

 The value of K_{sp} indicates the <i>solubility</i> of an ionic compound. The <i>smaller</i> the value of K_{sp}, the <i>less</i> soluble the compound. In using K values to compare solubility you 							
should chose compounds that have <i>similar</i> formulas; Otherwise, calculate the solubility of each compound and compare them.							
		Λ_{sp}					
AgCi		1.6 × 10					
	AgBr	7.7×10^{-13}					
	Agl	8.3 × 10 ⁻¹⁷					
		0.5 ~ 10					

e.	K _{sp} & Molar Solubility Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.									
16	Relationship between $K_{\rm sp}$ and Molar Solubility (s)									
Ë	Compound	K _{sp} Expression	Cation	Anion	Relation between K _{sp} and s					
A B	AgCl	$[Ag^+][Cl^-]$	S	s	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$					
F	BaSO ₄	$[Ba^{2+}][SO_4^{2-}]$	S	\$	$K_{\rm sp} = s^2; s = (K_{\rm sp})^{\frac{1}{2}}$					
	Ag ₂ CO ₃	[Ag ⁺] ² [CO ₃ ²⁻]	2 <i>s</i>	\$	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$					
	PbF ₂	$[Pb^{2+}][F^{-}]^{2}$	\$	2 <i>s</i>	$K_{\rm sp} = 4s^3; s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$					
	Al(OH) ₃	[Al ³⁺][OH ⁻] ³	\$	35	$K_{\rm sp} = 27s^4; s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{4}}$					
	Ca ₃ (PO ₄) ₂	$[Ca^{2+}]^3 [PO_4^{3-}]^2$	35	2 <i>s</i>	$K_{\rm sp} = 108s^5; s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{3}}$					
 Solubility product K_{sp} is an equilibrium constant. Molar solubility, solubility and solubility product all refer to a saturated solution 										

What is the solubility of silver chloride in g/L?
AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = 1.6 \times 10^{-10}$
Initial (M) 0.00 0.00 $K_{sp} = [Ag^+][Cl^-]$
Change (M) +s +s $K_{sp} = s^2$
Equilibrium (M) s s s $s = \sqrt{K_{sp}}$
 $s = 1.3 \times 10^{-5} M$ [Cl⁻] = $1.3 \times 10^{-5} M$
Solubility of AgCl =
 $\frac{1.3 \times 10^{-5} \text{ mol AgCl}}{1 \text{ L soln}} \times \frac{143.35 \text{ g AgCl}}{1 \text{ mol AgCl}} = 1.9 \times 10^{-3} \text{ g/L}$

What concentration of Ag is required to precipitate
ONLY AgBr in a solution that contains both Br
and Cl⁻ at a concentration of 0.02 *M*?
AgBr (s)
$$\Longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq) $K_{sp} = 7.7 \times 10^{-13}$
 $K_{sp} = [Ag^+][Br^-]$
 $[Ag^+] = \frac{K_{sp}}{[Br^-]} = \frac{7.7 \times 10^{-13}}{0.020} = 3.9 \times 10^{-11} M$
AgCl (s) \Longrightarrow Ag⁺ (aq) + Cl⁻ (aq) $K_{sp} = 1.6 \times 10^{-10}$
 $K_{sp} = [Ag^+][Cl^-]$
 $[Ag^+] = \frac{K_{sp}}{[Cl^-]} = \frac{1.6 \times 10^{-10}}{0.020} = 8.0 \times 10^{-9} M$
 $3.9 \times 10^{-11} M < [Ag^+] < 8.0 \times 10^{-9} M$

Procedure

- Refer to the Lab. manual for detailed "procedure" and "helpful notes".
- Do the analysis for a known solution (containing the four cations).
- Obtain from your instructor an unknown solution and repeat the same procedure to find what cations it contains.
- Write the equations of all chemical reactions involved in this experiment.